

Aerodynamic analysis of the 2nd AIAA High Lift Prediction Workshop by a Lattice-Boltzmann Method solver

<u>Ruddy Brionnaud</u> David M. Holman Miguel Chavez Modena

Outline

- XFlow CFD code
 - Numerical approach
 - Turbulence modelling
 - Spatial discretization
- 2nd HiLiftPW results
 - Simulations setup
 - Case 1: Convergence analysis
 - Case 3a: Low Reynolds number condition
 - Case 3b: High Reynolds number condition
 - Configurations comparison
- Conclusions

Outline

- XFlow CFD code
 - Numerical approach
 - Turbulence modelling
 - Spatial discretization
- 2nd HiLiftPW results
 - Simulations setup
 - Case 1: Convergence analysis
 - Case 3a: Low Reynolds number condition
 - Case 3b: High Reynolds number condition
 - Configurations comparison
- Conclusions

- Lattice Boltzmann Method (LBM)
 - \rightarrow Particle-based Lagrangian discretization
 - \rightarrow Boltzmann transport equation

Reference: Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G., and Joseph, D., "The lattice Boltzmann equation method: theoritical interpretation, numerics and implications," *International Journal of Multiphase Flow*, 29, 2003, 117-169

• Lattice Boltzmann Method (LBM)

- \rightarrow Particle-based Lagrangian discretization
- \rightarrow Boltzmann transport equation
- \rightarrow Mesoscopic scale: microscopic description

Reference: Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G., and Joseph, D., "The lattice Boltzmann equation method: theoritical interpretation, numerics and implications," *International Journal of Multiphase Flow*, 29, 2003, 117-169

- Lattice Boltzmann Method (LBM)
 - \rightarrow Particle-based Lagrangian discretization
 - \rightarrow Boltzmann transport equation
 - \rightarrow Mesoscopic scale: macroscopic variables

Reference: Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G., and Joseph, D., "The lattice Boltzmann equation method: theoritical interpretation, numerics and implications," *International Journal of Multiphase Flow*, 29, 2003, 117-169

• Lattice Boltzmann Method (LBM)

- \rightarrow Particle-based Lagrangian discretization
- \rightarrow Boltzmann transport equation
- \rightarrow Mesoscopic scale

\rightarrow Factorized Central Moment Lattice Boltzmann

$$\frac{Df}{Dt} = \Omega \longrightarrow \text{Collision operator}$$

Redistributes particles that arrive at the same time and position

Reference: Geier, M., Greiner, A., and Korvink, J., "A factorized central moment lattice Boltzmann method," *The European Physical Journal Special Topics*, Vol. 171, No. 1, 2009, pp. 55-61.

• Lattice Boltzmann Method (LBM)

- \rightarrow Particle-based Lagrangian discretization
- \rightarrow Boltzmann transport equation
- \rightarrow Mesoscopic scale
- → Factorized Central Moment Lattice Boltzmann

Reference: Geier, M., Greiner, A., and Korvink, J., "A factorized central moment lattice Boltzmann method," *The European Physical Journal Special Topics*, Vol. 171, No. 1, 2009, pp. 55-61.

Outline

- XFlow CFD code
 - Numerical approach
 - Turbulence modelling
 - Spatial discretization
- 2nd HiLiftPW results
 - Simulations setup
 - Case 1: Convergence analysis
 - Case 3a: Low Reynolds number condition
 - Case 3b: High Reynolds number condition
 - Configurations comparison
- Conclusions

Turbulence modeling

• Wall-Modeled Large Eddie Simulation (WMLES)

Turbulence modeling

• Wall-Modeled Large Eddie Simulation (WMLES)

Reference: Ducros, F., Nicoud, F. and Poinsot, T., "Wall-adapting local Eddy viscosity models for simulations in complex geometries," *Proceedings of 6th ICFD Conference on Numerical Methods for Fluid Dynamics*, 1998, pp. 293-299

Turbulence modeling

Technical Report, July 1999

Outline

- XFlow CFD code
 - Numerical approach
 - Turbulence modelling
 - Spatial discretization
- 2nd HiLiftPW results
 - Simulations setup
 - Case 1: Convergence analysis
 - Case 3a: Low Reynolds number condition
 - Case 3b: High Reynolds number condition
 - Configurations comparison
- Conclusions

Spatial discretization Lattice structure • **1. Complex Moving Boundaries** 0000001000 XFlow Diamono

Outline

- XFlow CFD code
 - Numerical approach
 - Turbulence modelling
 - Spatial discretization

• 2nd HiLiftPW results

Simulations setup

- Case 1: Convergence analysis
- Case 3a: Low Reynolds number condition
- Case 3b: High Reynolds number condition
- Configurations comparison
- Conclusions

Boundary conditions Gauge pressure outlet = 0 Pa Inlet velocity = 59.5 m/sFree-slip ground wall Flow direction

Case 1: "Config. 2"

Teide-HPC	CeSViMa
1052 nodes	44 nodes
Intel Xeon E5-2670 – 8 cores @2.60 GHz	2x Intel Xeon E5-2670 – 8 cores @2.60 GHz
32 GB DDR-3 RAM	64 GB DDR-3 RAM
Infiniband QDR 4x to 40Gb/s	Infiniband QDR 4x to 40Gb/s

Outline

- Context
- XFlow CFD code
 - Numerical approach
 - Turbulence modelling
 - Spatial discretization

• 2nd HiLiftPW results

- Simulations setup
- Case 1: Convergence analysis
- Case 3a: Low Reynolds number condition
- Case 3b: High Reynolds number condition
- Configurations comparison
- Conclusions

Global convergence

ÓAIAA.

Global convergence

GAIAA.

Global convergence

GAIAA.

Fuselage co	nvergence		α = 16 ⁰			
	Fuselage	Wing	# Elements	Sim. time	Comp. time	Cores
Extra-Coarse	8 mm	1 mm	40,600,000	0.1 s	15.8 h	160
Coarse	4 mm	1 mm	43,600,000	0.1 s	17.6 h	160 Cesvina
Medium	2 mm	1 mm	52,500,000	0.1 s	29.0 h	160
Fine	1 mm	1 mm	87,400,000	0.1 s	33.8 h	160

XFlow

Global cor	nvergence		α = 16 ⁰			
	Wing	Fuselage	# Elements	Sim. time	Comp. time	Cores
Coarse	4 mm	4 mm	43,600,000	0.1 s	1 h	160
Medium	2 mm	2 mm	52,500,000	0.1 s	5.2 h	160 Cesvina
Fine	1 mm	1 mm	87,400,000	0.1 s	33.8 h	160
Extra-Fine	0.5 mm	2 mm	150,000,000	0.1 s	84 h	256

Global cor	nvergence	•	α = 16°				
	Wing	Fuselage	# Elements	Sim. time	e Comp. time	Cores	
Coarse	4 mm	4 mm	43,600,000	0.1 s	1 h	160	
Medium	2 mm	2 mm	52,500,000	0.1 s	5.2 h	160 Ce SVi	Ma
Fine	1 mm	1 mm	87,400,000	0.1 s	33.8 h	160	CIÓN DE MADRID
Extra-Fine	0.5 mm	2 mm	150,000,000	0.1 s	84 h	256	

Global con	vergence	•		α = 16 ⁰					
	Wing	Fuselage	е	# Elements	Sim. tim	ne	Comp. time	Core	S
Coarse	4 mm	4 mm		43,600,000	0.1 s		1 h	160	
Medium	2 mm	2 mm		52,500,000	0.1 s		5.2 h	160	Ce S Vi Ma
Fine	1 mm	1 mm		87,400,000	0.1 s		33.8 h	160	CENTRO DE SUPERCOMPUTACIÓN Y VISUALZACIÓN DE MASIND
Extra-Fine	0.5 mm	2 mm		150,000,000	0.1 s		84 h	2 56	

Outline

- XFlow CFD code
 - Numerical approach
 - Turbulence modelling
 - Spatial discretization

• 2nd HiLiftPW results

- Simulations setup
- Case 1: Convergence analysis
- Case 3a: Low Reynolds number condition
- Case 3b: High Reynolds number condition
- Configurations comparison
- Conclusions

Computational information

Angle of attack	# Elements	Sim. time	Comp. time	Cores	
0º	153,780,000	0.1 s	50 h	576	
7º	156,120,000	0.1 s	49 h	576	
16º	162,390,000	0.1 s	60 h	576	
18.5º	164,090,000	0.1 s	68.5 h	576	teide
19º	164,400,000	0.1 s	66.4 h	576	LA V
20º	165,040,000	0.1 s	64.8 h	576	
21º	165,600,000	0.1 s	52 h	576	
24º	167,300,000	0.15 s	66 h	576	

Lift and drag polars

Lift and drag polars: linear region

2nd AIAA CFD High Lift Prediction Workshop (HiLiftPW-2)

GAIAA

Lift and drag polars: stall region

GAIAA

Flow structure

Vorticity at 7°

Flow structure $\alpha = 7^{\circ}$ $\alpha = 7^{\circ}$ Vorticity (s-1) 50000.000 37500.000 25000.000 12500.000 0.000

Flow structure

Flow structure

Flow structure

Outline

- XFlow CFD code
 - Numerical approach
 - Turbulence modelling
 - Spatial discretization

• 2nd HiLiftPW results

- Simulations setup
- Case 1: Convergence analysis
- Case 3a: Low Reynolds number condition

Case 3b: High Reynolds number condition

- Configurations comparison
- Conclusions

Computational information

Angle of attack	# Elements	Sim. time	Comp. time	Cores	
0º	153,780,000	0.1 s	44.2 h	576	
7º	156,120,000	0.1 s	41.4 h	576	
16º	162,390,000	0.1 s	43.9 h	576	
18.5º	164,090,000	0.1 s	33.9 h	1152	L_:_J_ % % % % %
20º	165,040,000	0.1 s	40.6 h	576	
21º	165,600,000	0.1 s	49.2 h	576	
22.4º	166,400,000	0.1 s	47.6 h	576	
24º	167,300,000	0.1 s	54.1 h	576	
26º	168,200,000	0.15 s	34.6 h	2304)	

Lift and drag polars

2nd AIAA CFD High Lift Prediction Workshop (HiLiftPW-2)

ÓAIAA.

Lift and drag polars: linear region

Lift and drag polars: stall region

GAIAA.

<u>ÓAIAA</u>

Flow structure

Outline

- XFlow CFD code
 - Numerical approach
 - Turbulence modelling
 - Spatial discretization

• 2nd HiLiftPW results

- Simulations setup
- Case 1: Convergence analysis
- Case 3a: Low Reynolds number condition
- Case 3b: High Reynolds number condition
- Configurations comparison
- Conclusions

XFlow

GAIAA

XFlow

GAIAA

Flow structure influence

Flow structure influence

Flow structure influence

Outline

- XFlow CFD code
 - Numerical approach
 - Turbulence modelling
 - Spatial discretization
- 2nd HiLiftPW results
 - Simulations setup
 - Case 1: Convergence analysis
 - Case 3a: Low Reynolds number condition
 - Case 3b: High Reynolds number condition
 - Configurations comparison
- Conclusions

Conclusions

- The CFD setup and preparation is short and easy despite the complex geometry and analyses shown in the presentation
- Results for the **HiLiftPW-2** are in **good agreement** with experimental data
- XFlow is able to **capture the stall entry** with good accuracy
- The WMLES approach provides a unique insight on the flow structure
- The influence of small geometrical details on the flow structure is captured with no additional effort
- XFlow is shown to be well suited for high lift aircraft design
- Future work to optimize resolution could improve the stall entry prediction

Acknowledgements

David M. Holman Ruddy Brionnaud Miguel Chávez Modena Eusebio Valero Sánchez

Acknowledgements

CENTRO DE SUPERCOMPUTACIÓN Y VISUALIZACIÓN DE MADRID

Jonatán Felipe García Santiago Cruz Díaz

Thank you for your attention!

Ruddy Brionnaud

ruddy.brionnaud@nextlimit.com

www.xflowcfd.com

